2014/2015, week 4 Cross-Country Income Differences

Romer, Chapter 1.6, 1.7, 4.2, 4.5, 4.6

- How can we test for the determinants of growth and, thereby, of income differences across countries?
- The Solow model in its log-linear form is one first step
- We will use this model again in order to perform *growth accounting*
- *Growth accounting* assesses the contribution of different factors of production to economic growth

Consider again the production function

Y(t) = F(K(t), A(t)L(t))

• Taking the total derivative of the above function w.r.t. time we get

$$\dot{Y}(t) = \frac{\partial Y(t)}{\partial K(t)} \dot{K}(t) + \frac{\partial Y(t)}{\partial L(t)} \dot{L}(t) + \frac{\partial Y(t)}{\partial A(t)} \dot{A}(t)$$

• Dividing both sides of the equation by Y(t), we get

$$\frac{\dot{Y}(t)}{Y(t)} = \frac{K(t)}{Y(t)} \frac{\partial Y(t)}{\partial K(t)} \frac{\dot{K}(t)}{K(t)} + \frac{L(t)}{Y(t)} \frac{\partial Y(t)}{\partial L(t)} \frac{\dot{L}(t)}{L(t)} + \frac{A(t)}{Y(t)} \frac{\partial Y(t)}{\partial A(t)} \frac{\dot{A}(t)}{A(t)}$$

• Which can be further simplified:

$$\frac{\dot{Y}(t)}{Y(t)} = \alpha_K(t)\frac{\dot{K}(t)}{K(t)} + \alpha_L(t)\left[\frac{\dot{L}(t)}{L(t)} + \frac{\dot{A}(t)}{A(t)}\right]$$

• Given that we have CRS,

$$\alpha_{K}(t) = 1 - \alpha_{L}(t)$$

• Hence, we have

$$\frac{\dot{Y}(t)}{Y(t)} = \frac{\dot{L}(t)}{L(t)} + \alpha_{K}(t) \left[\frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)} \right] + (1 - \alpha_{K}(t)) \frac{\dot{A}(t)}{A(t)} \longrightarrow$$

$$\frac{\dot{Y}(t)}{Y(t)} - \frac{\dot{L}(t)}{L(t)} = \alpha_{K}(t) \left[\frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)} \right] + R(t)$$

- According to the equation above, economic growth (growth of output per worker) is attributed to
 - Growth in the ratio of capital to labour
 - □ The Solow residual:
 - Technological progress
 - All other elements

- Interesting application is Young (1995)
- Using growth accounting, he derives that economic growth in the NIC's is due to
 - Rising investment
 - Increasing labour force participation
 - Increasing education of workers
- And not to
 - Rapid technological progress

- The main weakness of growth accounting:
 - it does not give insight into the ultimate sources of economic growth
- According to the growth accounting formula above, the impact of technological progress on growth is $1 \alpha_K(t)$, which may be close to 2/3
- Elaborating the Solow model yields that the impact equals 1

- The two are different because growth accounting attributes α_K(t) to the growth of capital per worker, thereby suggesting that this stands apart from technological progress
- According to the Solow model, capital per worker grows at rate A(t)/A(t) along the balanced-growth path
- Hence, growth accounting may be misleading

To illustrate, take the following version of the growth accounting equation:

$$\frac{Y(t)}{Y(t)} = \alpha_K(t)\frac{K(t)}{K(t)} + \alpha_L(t)\frac{L(t)}{L(t)} + R(t)$$

- The average contributions of the three terms in a number of countries are (rounded):
 - Capital 50%, Labour 20%; Technology 30%
- Correcting for the endogeneity of capital:
 - Capital 0%, Labour 20%; Technology 80%
 - Bron: *Economen kunnen niet rekenen*

- How about extending the approach by including human capital?
- Would that increase the contribution from capital (and decrease the role of technology or, better, the residual)?
- Take the following Cobb-Douglas production function

 $Y(t) = K(t)^{a} \left(A(t)H(t)\right)^{1-a}$

- One can think of human capital *H* as the contribution of skills, expertise or education to the quality of labour
- The more educated, skilled or experienced the labour force, the higher is human capital *H*

To see how the introduction of human capital improves the ability of the model to explain income per capita growth and, hence, cross-country income differences, consider our new production function (in per capita terms) in logs

$$\ln \frac{Y_i}{L_i} = a \ln \frac{K_i}{L_i} + (1-a) \ln \frac{H_i}{L_i} + (1-a) \ln A_i$$

• The above equation can be further rearranged as

$$\square ln\frac{Y_i}{L_i} = \frac{a}{1-a}ln\frac{K_i}{Y_i} + ln\frac{H_i}{L_i} + lnA_i$$

- Empirical Results; the hard part is to find a good proxy for the human capital term *H*
 - □ In empirical studies, it is proxied with years of schooling
- Hall & Jones (1999) compare the five richest countries in their sample with the five poorest ones
- Average Y/L in the rich group exceeds that in the poor group by 31.7 (or 3.5 in logs)
- The contribution of (a/(1-a))ln(K/Y) is 0.6, that of ln(H/L) is 0.8, and that of ln(A) is 2.1

- That is, only about a sixth in the gap between the richest countries and the poorest ones is due to differences in physical capital intensity
- Only a slightly larger fraction is due to differences in schooling
- The largest part of country differences in income per capita is due to differences in technology or other factors included in the Solow residual

Extensions:

- Human capital also depends on nationality worker (Klenow and Rodríguez-Claire 1997, Hendricks 2002)
- Return to education may be different for different types of education
- Low-skilled labour and high-skilled labour may be complements in production
- Conclusion does not change:
 - The inclusion of human capital into the production function does not lead to dramatically different results

- The Solow Growth model predicts convergence to a state of balanced growth
- Hence, countries starting below their long-run paths grow faster than those starting above
- To see that consider a case where differences in Y/L stem only from physical capital per worker K/L. That is, human capital per worker and output for given inputs are the same across countries

Verdeling van inkomen en economische groei in geïndustrialiseerde landen

	BBP per hoofd van de bevolking, 1970 (in \$)	BBP per hoofd van de bevolking, 2009 (in \$)	Economische groei per jaar, 1970-2009 (in %)
VS	20.480	41.102	1,8
Nederland	19.050	40.566	2,0
Duitsland	16.236	32.487	1,8
Verenigd Koninkrijk	15.829	33.386	1,9
Frankrijk	15.676	30.821	1,7
Italië	14.371	27.692	1,7
Spanje	11.981	27.632	2,2
Zuid-Korea	3.018	25.029	5,6

Bron: Economen kunnen niet rekenen

Verdeling van inkomen en economische groei in de wereld

	BBP per hoofd van de bevolking, 1970 (in \$)	BBP per hoofd van de bevolking, 2009 (in \$)	Economische groei per jaar, 1970-2009 (in %)
VS	20.480	41.102	1,8
Nederland	19.050	40.566	2,0
Venezuela	8.934	9.115	0,1
Madagascar	950	753	-0,6
India	886	3.238	3,4
China	865	7.431	5,7
Oeganda	817	1.152	0,9
Zimbabwe	339	143	-2,2

Bron: Economen kunnen niet rekenen

□ Assume again the CRS production function

Y(t) = F(K(t), A(t)L(t))

Recall the adjustment equation for capital per effective worker:

$$\overset{\bullet}{k} = \lambda \left[k_i^* - k_i(t) \right]$$

□ Where $\lambda > 0$ measures the rate of convergence

- This says that the farther is the economy below its balanced growth path, the faster does K/L grow
- □ For Y/L a similar expression applies
- Hence, also Y/L grows faster the more Y/L differs from its steady-state level

- However, we have two alternatives about the value of k*
- One is that it is the same in all countries
 - □ In this case, all countries grow towards the same Y/L
 - □ The lower is Y/L, the faster is its growth. This is called *unconditional convergence*

- □ Second is that k^* varies across countries
 - In this case, there is a persistent component of cross-country income differences
 - Poor countries (e.g., with low saving rates) may not grow faster than other countries
 - There is still convergence towards the own balanced growth path
 - This is called *conditional convergence*

- Unconditional convergence gives a good description of differences in growth among industrialized countries in the post-war period
 - This is so since saving rates, levels of education and other factors related to long-run fundamentals are similar across industrialized countries
- For the same reason, it does not work that well for countries all over the world
 - In terms of the Solow Growth model, s, n and g can differ a lot between countries

- Baumol (1986) addresses the question whether the growth performance of countries features convergence
- Baumol (1986) examines convergence from 1870 to 1979 among 16 industrialized countries
 - He regresses output growth over this period on a constant and initial income
 - Model specification:

$$\ln\left[\left(\frac{Y}{N}\right)_{i,1979}\right] - \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right] = a + b\ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right] + \varepsilon_i$$

- ln(Y/N) is log income per person, ε is an error term, and i indexes countries
- Convergence if b <0: countries with higher initial incomes have lower growth</p>
- Perfect convergence if b = -1
- No convergence if b = 0

• Estimation result:

$$\ln\left[\left(\frac{Y}{N}\right)_{i,1979}\right] - \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right] = 8.457 - \underset{(0.094)}{0.094} \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right],$$
$$R^{2} = 0.87, \qquad \text{s.e.e.} = 0.15,$$

Weaknesses in Baumol Study

- DeLong (1988) shows that Baumol's finding is largely spurious, due to
 - Sample selection: since historical data are constructed retrospectively, the countries that have long data series are generally those that are the most industrialized today
 - Measurement error: estimates of real income per capita in 1870 are imprecise. Measurement error creates bias toward finding convergence

- One way to tackle the first problem is to increase the sample and compare the richest countries as of 1870
- DeLong (1988) creates a sample that consists of all countries at least as rich as the second poorest country in Baumol's sample in 1870, Finland
- Hence, he adds 7 countries (Argentina, Chile, East Germany, Ireland, New Zealand, Portugal, and Spain) and drops one (Japan)
- Result: the estimate of b of -0.995 drops to -0.566 and becomes less statistically significant (see Figure on next slide).

• Way to tackle the second problem (i.e. measurement error) is to estimate:

$$\ln\left[\left(\frac{Y}{N}\right)_{i,1979}\right] - \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right]^* = a + b \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right]^* + \varepsilon_i,$$
$$\ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right] = \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right]^* + u_i.$$

In[(Y/N)1870]* is the true value of log income per capita in 1870

- In[(Y/N)1870] is the measured value
- ε and u are assumed to be uncorrelated with each other and with ln[(Y/N)1870]*

Result: depending on the guess for the standard deviation of the estimation error, the estimate for b drops further, to 0 or even 1, thereby eliminating all of the remainder of Baumol's estimate of convergence

- Where do income differences (i.e., differences in Y/L) between countries stem from?
- Similarly, what makes income differ between time periods?
- According to the Solow model, there are two candidate factors:
 - Differences in the capital per worker (K/L)
 - Differences in the effectiveness of labour (A)

- Take the production function. This reads as follows:
 - $\Box \quad Y = F(K, AL) \quad \rightarrow \quad y = F(k, A)$
 - Where y and k are defined as output and capital respectively per worker (!):

$$\Box \quad y = \frac{Y}{L}; \, k = \frac{K}{L}$$

 Assume the production function is Cobb-Douglas:

$$\Box \quad Y = K^{\alpha} (AL)^{1-\alpha} \quad \rightarrow$$

$$\Box \quad y = k^{\alpha} A^{1-\alpha}$$

Income difference between countries A and B:

$$\Box \quad y = k^{\alpha} A^{1-\alpha}$$

$$\Box \qquad \left(\frac{y^A}{y^B}\right) = \left(\frac{k^A}{k^B}\right)^{\alpha} \left(\frac{A^A}{A^B}\right)^{1-\alpha}$$

- Can differences in the stocks of capital per worker explain income differences between countries?
- In order to account for the difference in income between a rich country and a poor country of a factor 10, the stocks of capital need to differ a factor (10)^{1/α}

• Formally, solve
$$\left(\frac{y^A}{y^B}\right) = 10 = \left(\frac{k^A}{k^B}\right)^{\alpha} \rightarrow \left(\frac{k^A}{k^B}\right) = (10)^{1/\alpha}$$

□ Standard elasticity of output w.r.t. capital

$$\alpha = 1/3: \left(\frac{k^A}{k^B}\right) = (10)^{1/(\frac{1}{3})} = 1000$$

• Elasticity using broad measure of capital

•
$$\alpha = 1/2: \left(\frac{k^A}{k^B}\right) = (10)^{1/(\frac{1}{2})} = 100$$

 Capital stocks differ not more than a factor 20 to 30 between rich and poor countries

• The marginal product of capital in the Cobb-Douglas case:

$$y = f(k) = k^{\alpha} \quad \rightarrow \quad$$

$$\Box \quad f'(k) = \alpha k^{\alpha - 1} = \alpha y^{(\alpha - 1)/\alpha}$$

In order to account for the difference in income between a rich country and a poor country of a factor 10, the marginal products of capital differ a factor (10)^{(α-1)/α}

• Standard elasticity of output w.r.t. capital

$$\alpha = \frac{1}{3}: \left(\frac{f'(k)^A}{f'(k)^B}\right) = (10)^{\left(\frac{-2}{3}\right)/\left(\frac{1}{3}\right)} = 0,01$$

• Elasticity using broad measure of capital

$$\alpha = 1/2: \left(\frac{f'(k)^A}{f'(k)^B}\right) = (10)^{\left(\frac{-1}{2}\right)/\left(\frac{1}{2}\right)} = 0,1$$

- Rates of return do not differ a factor 10 or 100 between countries
- If they did so, we would observe massive capital flows from rich to poor countries

- For differences in income over time, the same holds true as for differences in income between countries:
 - In the data, capital stocks and rate of return on capital do not differ enough to account for the output differences
- This implies
 - That countries and time periods differ a lot in terms of A
 - Or, that capital is much more valuable than is reflected in its price

Growth in the Solow Growth model

- Along the balanced growth path, Y/L and K/L grow at rate g
- But g is exogenous
- So the Solow model describes long-run growth by just imposing it!
- In addition, the model is very abstract as regards the description of knowledge (or effectiveness of labour)

- The fact that knowledge is not well defined makes the empirical analysis tough. Why?
- Because we are interested in knowing about the determinants of growth. What are they, and how they are formed
- In fact, we need to specify what the knowledge term A captures (econometrically speaking, we need the right proxy). We need to analyse the determinants of knowledge over time
- By doing so, we are able to understand worldwide growth and cross-country differences in real incomes

- □ A bunch of other possible factors exist that can contribute to an explanation of economic growth:
 - Abstract knowledge, expertise
 - Education and skills of the labour force
 - Strength of property rights
 - Quality of infrastructure
 - Cultural attitudes towards entrepreneurship and work

- A useful distinction is the following one:
- Social infrastructure
- Geography
- Colonization strategies

Social infrastructure

- Taxes, subsidies, regulations
- □ Values and norms, work attitude, religion
- Corruption, bribery, dictatorship versus democracy, government expropriation

Geography

- Possibilities to develop agriculture, tropical diseases
- Colonization strategies (Acemoglu, Johnson, Robinson)
 - Establishment of "extractive states" with a focus on exploitation and without establishment of democratic institutions (Latin American countries)
 - Establishment of "settler colonies" (United States, Australia, New Zealand)

- The precise role of all these factors is still unknown, but currently widely investigated
- Hopefully, we will reach more definitive conclusions in the future
- Economists may not succeed in this goal, hampered by lack of the right data and lack of social experiments