2015/2016, week 4 Cross-Country Income Differences

Romer, Chapter 1.6, 1.7, 4.2, 4.5, 4.6

Differences in growth rates

Verdeling van inkomen en economische groei in geïndustrialiseerde landen

	BBP per hoofd van de bevolking, 1970 (in \$)	BBP per hoofd van de bevolking, 2009 (in \$)	Economische groei per jaar, 1970-2009 (in %)
VS	20.480	41.102	1,8
Nederland	19.050	40.566	2,0
Duitsland	16.236	32.487	1,8
Verenigd Koninkrijk	15.829	33.386	1,9
Frankrijk	15.676	30.821	1,7
Italië	14.371	27.692	1,7
Spanje	11.981	27.632	2,2
Zuid-Korea	3.018	25.029	5,6

Bron: Economen kunnen niet rekenen

Differences in growth rates

Verdeling van inkomen en economische groei in de wereld

	BBP per hoofd van de bevolking, 1970 (in \$)	BBP per hoofd van de bevolking, 2009 (in \$)	Economische groei per jaar, 1970-2009 (in %)
VS	20.480	41.102	1,8
Nederland	19.050	40.566	2,0
Venezuela	8.934	9.115	0,1
Madagascar	950	753	-0,6
India	886	3.238	3,4
China	865	7.431	5,7
Oeganda	817	1.152	0,9
Zimbabwe	339	143	-2,2

Bron: Economen kunnen niet rekenen

The power of economic growth

- Suppose China, the Netherlands and Venezuela were equivalent in terms of GDP 40 years ago
- In 40 years, China growing 5.7 percent a year, would have become 4 times as rich as the Netherlands
- Similarly, in 40 years time, the Netherlands would have become twice as rich as Venezuela growing 0.1 percent a year only

Economic growth; scope and definition

- Lecture is about structural economic growth
- It is not about business cycle fluctations of growth around its structural value
- Economic growth refers to growth of the Gross
 Domestic Product
 - Homework
 - Environmental damage
 - Natural resources

- Adopts the concept of the aggregate production function
- Attributes economic growth to the contribution of different production factors

Consider the aggregate production function

Y(t) = F(K(t), A(t)L(t))

• Take the total derivative of the above function with respect to time:

$$\dot{Y}(t) = \frac{\partial Y(t)}{\partial K(t)} \dot{K}(t) + \frac{\partial Y(t)}{\partial L(t)} \dot{L}(t) + \frac{\partial Y(t)}{\partial A(t)} \dot{A}(t)$$

• Dividing both sides of the equation by Y(t), we get

$$\frac{\dot{Y}(t)}{Y(t)} = \frac{K(t)}{Y(t)} \frac{\partial Y(t)}{\partial K(t)} \frac{\dot{K}(t)}{K(t)} + \frac{L(t)}{Y(t)} \frac{\partial Y(t)}{\partial L(t)} \frac{\dot{L}(t)}{L(t)} + \frac{A(t)}{Y(t)} \frac{\partial Y(t)}{\partial A(t)} \frac{\dot{A}(t)}{A(t)}$$

• Which can be further simplified:

$$\frac{\dot{Y}(t)}{Y(t)} = \alpha_K(t)\frac{\dot{K}(t)}{K(t)} + \alpha_L(t)\left[\frac{\dot{L}(t)}{L(t)} + \frac{\dot{A}(t)}{A(t)}\right]$$

Given that we have CRS, $\alpha_{K}(t) = 1 - \alpha_{L}(t)$, we have the growth accounting equation:

$$\frac{\dot{Y}(t)}{Y(t)} = \frac{\dot{L}(t)}{L(t)} + \alpha_K(t) \left[\frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)} \right] + (1 - \alpha_K(t)) \frac{\dot{A}(t)}{A(t)}$$

• An alternative formula is the following:

$$\frac{\dot{Y}(t)}{Y(t)} - \frac{\dot{L}(t)}{L(t)} = \alpha_K(t) \left[\frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)} \right] + R(t)$$

- According to the growth accounting equation, economic growth is attributed to
 - Growth in the input of labour
 - Growth in the input of physical capital
 - The Solow residual:
 - Technological progress
 - All other elements

Empirical application

- Interesting application is Young (1995)
- He adopts technique of growth accounting to explain the extraordinary postwar growth of Hong Kong, Singapore, South Korea and Taiwan (Newly Industrializing Economies)

Empirical application

- Result: economic growth has been high due to
 - Rising investment rates
 - Increasing labour force participation rates
 - Increasing levels of education
 - Intersectoral reallocations of labour towards the non-agricultural and manufacturing sector
- Additionally, the contribution of other factors such as total factor productivity growth has been limited

Growth accounting: caveat

- The factors that, according to growth accounting, drive economic growth, may be dependent on one another
- For example,
 - Labour force participation and education may both be related to labour productivity growth
 - Capital accumulation and also labour force participation may depend on technological progress

Growth accounting: caveat

- Hence, the technique of growth accounting may overstate on understate the contribution of a factor of production
- For example, suppose A(t) increases with one percent
 - According to growth accounting, this increases GDP with $(1-\alpha_{K}(t))$ percent
 - If capital accumulation increases upon an increase in the level of technology, the growth effect is higher

Growth accounting: caveat

- Growth accounting can thus be used for linking economic growth to different factors of production
- Growth accounting should thus not be used for 'what if' simulation analysis

The Solow Growth model: the balanced growth path

- Along the balanced growth path, Y/L and K/L grow at rate g
- But g is exogenous
- So the Solow model describes long-run growth by just imposing it!
- In addition, the model is very abstract as regards the description of knowledge (or effectiveness of labour)

- The Solow Growth model predicts convergence to a state of balanced growth
- Hence, countries starting below their long-run paths grow faster than those starting above
- To see that consider a case where differences in Y/L stem only from physical capital per worker K/L. That is, human capital per worker and output for given inputs are the same across countries

□ Assume again the CRS production function

Y(t) = F(K(t), A(t)L(t))

Recall the adjustment equation for capital per effective worker:

$$\overset{\bullet}{k} = \lambda \left[k_{i}^{*} - k_{i}(t) \right]$$

 \square $\lambda > 0$ measures the rate of convergence

- This says that the farther is the economy below its balanced growth path, the faster does K/L grow
- □ For Y/L a similar expression applies
- Hence, also Y/L grows faster the more Y/L differs from its steady-state level

- □ As to the value of k*, one can make two alternative assumptions
- One is that k^* is the same in all countries
 - □ In this case, all countries grow towards the same Y/L
 - The lower is the initial level Y/L, the faster is the growth of Y/L
 - We call this *unconditional convergence*

- A second assumption is that k* varies across countries
 - In this case, there is a persistent component of cross-country income differences
 - Poor countries (e.g., with low saving rates) may not grow faster than other countries
 - There is still convergence towards the own balanced growth path
 - We call this *conditional convergence*

- Unconditional convergence gives a good description of differences in growth among industrialized countries in the post-war period
 - This is so since saving rates, levels of education and other factors related to long-run fundamentals are similar across industrialized countries
- For the same reason, it does not work that well for countries all over the world
 - In terms of the Solow Growth model, s, n and g can differ a lot between countries

Differences in growth rates

Verdeling van inkomen en economische groei in geïndustrialiseerde landen

	BBP per hoofd van de bevolking, 1970 (in \$)	BBP per hoofd van de bevolking, 2009 (in \$)	Economische groei per jaar, 1970-2009 (in %)
VS	20.480	41.102	1,8
Nederland	19.050	40.566	2,0
Duitsland	16.236	32.487	1,8
Verenigd Koninkrijk	15.829	33.386	1,9
Frankrijk	15.676	30.821	1,7
Italië	14.371	27.692	1,7
Spanje	11.981	27.632	2,2
Zuid-Korea	3.018	25.029	5,6

Bron: Economen kunnen niet rekenen

Differences in growth rates

Verdeling van inkomen en economische groei in de wereld

	BBP per hoofd van de bevolking, 1970 (in \$)	BBP per hoofd van de bevolking, 2009 (in \$)	Economische groei per jaar, 1970-2009 (in %)
VS	20.480	41.102	1,8
Nederland	19.050	40.566	2,0
Venezuela	8.934	9.115	0,1
Madagascar	950	753	-0,6
India	886	3.238	3,4
China	865	7.431	5,7
Oeganda	817	1.152	0,9
Zimbabwe	339	143	-2,2

Bron: Economen kunnen niet rekenen

- Baumol (1986) addresses the question whether the growth performance of countries features convergence
- Baumol (1986) examines convergence from 1870 to 1979 among 16 industrialized countries
 - He regresses output growth over this period on a constant and initial income
 - Model specification:

$$\ln\left[\left(\frac{Y}{N}\right)_{i,1979}\right] - \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right] = a + b\ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right] + \varepsilon_i$$

- ln(Y/N) is log income per person, ε is an error term, and i indexes countries
- Convergence if b <0: countries with higher initial incomes have lower growth</p>
- Perfect convergence if b = -1
- No convergence if b = 0

• Estimation result:

$$\ln\left[\left(\frac{Y}{N}\right)_{i,1979}\right] - \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right] = 8.457 - \underbrace{0.995}_{(0.094)} \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right],$$
$$R^{2} = 0.87, \qquad \text{s.e.e.} = 0.15,$$

- DeLong (1988) shows that Baumol's finding is largely spurious, due to
- Sample selection:
 - since historical data are constructed retrospectively, the countries that have long data series are generally those that are the most industrialized today
- Measurement error:
 - estimates of real income per capita in 1870 are imprecise.
 Measurement error creates bias toward finding convergence

- One way to tackle the first problem is to increase the sample and compare the richest countries as of 1870
- DeLong (1988) creates a sample that consists of all countries at least as rich as the second poorest country in Baumol's sample in 1870, Finland
- Hence, he adds 7 countries (Argentina, Chile, East Germany, Ireland, New Zealand, Portugal, and Spain) and drops one (Japan)
- Result:
 - the estimate of b of -0.995 drops to -0.566 and becomes less statistically significant

• Way to tackle the second problem (i.e. measurement error) is to estimate:

$$\ln\left[\left(\frac{Y}{N}\right)_{i,1979}\right] - \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right]^* = a + b \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right]^* + \varepsilon_i,$$
$$\ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right] = \ln\left[\left(\frac{Y}{N}\right)_{i,1870}\right]^* + u_i.$$

In[(Y/N)1870]* is the true value of log income per capita in 1870

- In[(Y/N)1870] is the measured value
- ϵ and u are assumed to be uncorrelated with each other and with ln[(Y/N)1870]*
- Result:

depending on the guess for the standard deviation of the estimation error, the estimate for b drops further, to 0 or even 1, thereby eliminating all of the remainder of Baumol's estimate of convergence

- Where do income differences (i.e., differences in Y/L) between countries stem from?
- Similarly, what makes income differ between time periods?
- According to the Solow model, there are two candidate factors:
 - Differences in the capital per worker (K/L)
 - Differences in the effectiveness of labour (A)

- Take the production function. This reads as follows:
 - $\Box \quad Y = F(K, AL) \quad \rightarrow \quad y = F(k, A)$
 - Where y and k are defined as output and capital respectively per worker (!):

$$\Box \quad y = \frac{Y}{L}; \, k = \frac{K}{L}$$

 Assume the production function is Cobb-Douglas:

$$\Box \quad Y = K^{\alpha} (AL)^{1-\alpha} \quad \rightarrow$$

$$\Box \quad y = k^{\alpha} A^{1-\alpha}$$

Income difference between countries A and B:

$$\Box \qquad \left(\frac{y^A}{y^B}\right) = \left(\frac{k^A}{k^B}\right)^{\alpha} \left(\frac{A^A}{A^B}\right)^{1-\alpha}$$

- Can differences in the stocks of capital per worker explain income differences between countries?
- In order to account for the difference in income between a rich country and a poor country of a factor 10, the stocks of capital need to differ a factor (10)^{1/α}

• Formally, solve
$$\left(\frac{y^A}{y^B}\right) = 10 = \left(\frac{k^A}{k^B}\right)^{\alpha} \rightarrow \left(\frac{k^A}{k^B}\right) = (10)^{1/\alpha}$$

• Standard elasticity of output w.r.t. capital

$$\alpha = 1/3: \left(\frac{k^A}{k^B}\right) = (10)^{1/(\frac{1}{3})} = 1000$$

• Elasticity using broad measure of capital

•
$$\alpha = 1/2: \left(\frac{k^A}{k^B}\right) = (10)^{1/(\frac{1}{2})} = 100$$

 Capital stocks differ not more than a factor 20 to 30 between rich and poor countries Cross-country income differences: the role of capital

• The marginal product of capital in the Cobb-Douglas case:

$$y = f(k) = k^{\alpha} \quad \rightarrow \quad$$

$$\Box \quad f'(k) = \alpha k^{\alpha - 1} = \alpha y^{(\alpha - 1)/\alpha}$$

In order to account for the difference in income between a rich country and a poor country of a factor 10, the marginal products of capital differ a factor (10)^{(α-1)/α}

Cross-country income differences: the role of capital

• Standard elasticity of output w.r.t. capital

$$\alpha = \frac{1}{3}: \left(\frac{f'(k)^A}{f'(k)^B}\right) = (10)^{\left(\frac{-2}{3}\right)/\left(\frac{1}{3}\right)} = 0.01$$

• Elasticity using broad measure of capital

$$\alpha = \frac{1}{2}: \left(\frac{f'(k)^A}{f'(k)^B}\right) = (10)^{\left(\frac{-1}{2}\right)/\left(\frac{1}{2}\right)} = 0.1$$

- Rates of return do not differ a factor 10 or 100 between countries
- If they did so, we would observe massive capital flows from rich to poor countries

Income differences over time: the role of capital

- For differences in income over time, the same holds true as for differences in income between countries:
 - In the data, capital stocks and rate of return on capital do not differ enough to account for the output differences
- This implies
 - That countries and time periods differ a lot in terms of A
 - Or, that capital is much more valuable than is reflected in its price

- How about extending the approach by including human capital?
- Would that increase the contribution from capital (and decrease the role of technology or, better, the residual)?
- Take the following Cobb-Douglas production function

 $Y(t) = K(t)^{a} \left(A(t)H(t)\right)^{1-a}$

- One can think of human capital *H* as the contribution of skills, expertise or education to the quality of labour
- The more educated, skilled or experienced the labour force, the higher is human capital *H*

To see how the introduction of human capital improves the ability of the model to explain income per capita growth and, hence, cross-country income differences, consider our new production function (in per capita terms) in logs

$$\ln \frac{Y_i}{L_i} = a \ln \frac{K_i}{L_i} + (1-a) \ln \frac{H_i}{L_i} + (1-a) \ln A_i$$

• The above equation can be further rearranged as

$$\square ln\frac{Y_i}{L_i} = \frac{a}{1-a}ln\frac{K_i}{Y_i} + ln\frac{H_i}{L_i} + lnA_i$$

- Empirical Results; the hard part is to find a good proxy for the human capital term *H*
 - □ In empirical studies, it is proxied with years of schooling
- Hall & Jones (1999) compare the five richest countries in their sample with the five poorest ones
- Average Y/L in the rich group exceeds that in the poor group by 31.7 (or 3.5 in logs)
- The contribution of (a/(1-a))ln(K/Y) is 0.6, that of ln(H/L) is 0.8, and that of ln(A) is 2.1

- That is, only about a sixth in the gap between the richest countries and the poorest ones is due to differences in physical capital intensity
- Only a slightly larger fraction is due to differences in schooling
- The largest part of country differences in income per capita is due to differences in technology or other factors included in the Solow residual

Extensions:

- Human capital also depends on nationality worker (Klenow and Rodríguez-Claire 1997, Hendricks 2002)
- Return to education may be different for different types of education
- Low-skilled labour and high-skilled labour may be complements in production
- Conclusion does not change:
 - The inclusion of human capital into the production function does not lead to dramatically different results

Cross-country income differences: the residual A

- The fact that the residual term A is not well defined makes the empirical analysis tough. Why?
- Because we want to know the determinants of growth.
 - What are the determinants of economic growth?
 - Are they exogenous or endogenously related to economic policies?
 - □ If so, which kind of economic policies?

Cross-country income differences: the residual A

- □ A bunch of other possible factors exist that can contribute to an explanation of economic growth
- Charles Jones introduced the term social infrastructure
 - The whole of government activities that impact on the wedge between social and private returns
 - The definition is very broad: the activities may increase or deteriorate social welfare

Cross-country income differences: social infrastructure

- Taxation and subsidization of various activities (labour supply, saving, investment, education)
 - Operational costs
 - Costs in terms of changed economic behaviour
 - Costs in terms of an expansion of the informal economy
- Legislation
 - Crime
 - Enforceability of contracts
- Government expropriation, bribery

Cross-country income differences: social infrastructure

- Values and norms
 - Religion
 - Individual initiative
- Interest groups
 - Dictatorship
 - Bribe-taking officials
 - Firms that benefit from a lack of competition

Cross-country income differences: geography

- Average incomes in countries within 20 degrees of the equator are less than a sixth of those in countries at more than 40 degrees of latitude
- The former countries feature environments more conducive to disease
- The former countries feature climates less favourable to agriculture

Cross-country income differences: colonization strategies

- Acemoglu, Johnson and Robinson argue that today's institutions – which are important for economic growth – have been shaped by colonization strategies as pursued by European countries in the past few centuries
- 1 Establishment of "extractive states" that focus on exploitation without creating democratic institutions in high-mortality regions (Latin American countries)
- 2 Establishment of "settler colonies" that create institutions similar to those in the colonist countries in low-mortality regions (United States, Australia, New Zealand)

Cross-country income differences: colonization strategies

- Acemoglu and Robinson (2012), Why Nations Fail
 The origins of power, prosperity and poverty
- Book blends economics, politics and history
- Argues that economic growth stems from inclusive institutions
- On the contrary, extractive institutions hinder economic growth

Cross-country income differences: the residual A

- The precise role of all these factors is still unknown, but currently widely investigated
- Economists may fail to ever produce definitive answers to the question of the ultimate determinants of economic growth on account of
 - □ a lack of empirical data
 - □ a lack of social experiments